INFORMATION THEORY & CODING

Week 3: Inequalities

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

September 22, 2020

Review Summary

Definitions:

$$H(X) = E_{p} \log \frac{1}{p(X)}$$

$$H(X, Y) = E_{p} \log \frac{1}{p(X, Y)}$$

$$H(X|Y) = E_{p} \log \frac{1}{p(X|Y)}$$

$$I(X; Y) = E_{p} \log \frac{p(X, Y)}{p(X)p(Y)}$$

$$D(p||q) = E_{p} \log \frac{p(X)}{q(X)}$$

$$I(X; Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(X) + H(Y) - H(X, Y).$$

Review Summary

• Chain rules:

Entropy:

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1).$$

Mutual information:

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_1, X_2, ..., X_{i-1}).$$

Relative entropy:

$$D(p(x,y)||q(x,y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)).$$

Definition (Convexity)

A function f(x) is said to be *convex* over an interval (a, b) if $\forall x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

A function f is called *strictly convex* if equality holds only if $\lambda = 0$ or $\lambda = 1$.

Definition (Concavity)

A function f is *concave* if -f is convex.

A function is convex if it always lies below any chord. A function is concave if it always lies above any chord.

Definition (Convexity)

A function f(x) is said to be *convex* over an interval (a, b) if for every $x_1x_2 \in (a,b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

A function f is called *strictly convex* if equality holds only if $\lambda = 0$ or $\lambda = 1$.

Definition (Concavity)

A function f is concave if -f is co

A function is convex if it always lie concave if it always lies above any

Example

$$f(x) = x^2$$
, $|x|$, e^x , $x \log x$ $(x > 0)$
 $g(x) = \log x$, \sqrt{x} , $(x \ge 0)$

Theorem 2.6.2 (Jensen's Inequality)

If f is a convex function and X is a random variable,

$$E[f(X)] \geq f(E[X]).$$

Moreover, if f is strictly convex, E[f(X)] = f(E[X]) implies that X = E[X] with probability 1 (i.e., X is a constant).

Proof.

By mathematical induction.

- - $p(x_1)f(x_1) + p(x_2)f(x_2) \ge f(p(x_1)x_1 + p(x_2)x_2).$
- Hypothesis: $\sum_{i=1}^{k-1} p(x_i) f(x_i) \ge f(\sum_{i=1}^{k-1} p(x_i) x_i)$.
- Induction: $\sum_{i=1}^{k} p(x_i) f(x_i)$.

Information Inequality

Theorem 2.6.3 (Information Inequality)

Let p(x), q(x), $x \in X$, be two probability mass functions. Then

$$D(p||q) \geq 0$$

with equality iff p(x) = q(x) for all x.

Proof.

Let
$$A = \{x : p(x) > 0\}$$
 be the support set of $p(x)$. Then
$$-D(p\|q) = -\sum_{x \in A} p(x) \log \frac{p(x)}{q(x)}$$

$$= \sum_{x \in A} p(x) \log \frac{q(x)}{p(x)}$$

$$\leq \log \sum_{x \in A} p(x) \frac{q(x)}{p(x)} \text{ (Jensen's Inequality)}$$

$$= \log \sum_{x \in A} q(x)$$

$$\leq \log \sum_{x \in A} q(x) = 0$$

Corollaries

Corollary (Nonnegativity of mutual information)

For any two random variables, X, Y,

$$I(X; Y) \geq 0$$

with equality iff X and Y are independent.

Corollary

$$D(p(y|x)||q(y|x)) \ge 0,$$

with equality iff p(y|x) = q(y|x) for all y and x such that p(x) > 0.

Corollary

$$I(X; Y|Z) \geq 0$$
,

with equality iff X and Y are conditionally independent given Z.

The maximum entropy distribution

Theorem 2.6.4

 $H(X) \leq \log |\mathcal{X}|$, where $|\mathcal{X}|$ denotes the number of elements in the range of X, with equality iff X has a uniform distribution over $|\mathcal{X}|$.

Proof.

Let $u(x) = \frac{1}{|\mathcal{X}|}$ be the uniform probability mass function over \mathcal{X} , and let p(x) be the probability mass function for X. Then

$$0 \le D(p||u) = \sum p(x) \log \frac{p(x)}{u(x)} = \log |\mathcal{X}| - H(X).$$

Conditioning reduces entropy

Theorem 2.6.5 (Conditioning reduces entropy)

$$H(X|Y) \leq H(X)$$

with equality iff X and Y are independent.

Theorem 2.6.6 (Independence bound on entropy)

Let $X_1, X_2, ..., X_n$ be drawn according to $p(x_1, x_2, ..., x_n)$, then

$$H(X_1,X_2,\ldots,X_n)\leq \sum_{i=1}^n H(X_i)$$

with equality iff the X_i 's are independent.

Data-processing inequality

Definition (Markov Chain)

Random variables X,Y,Z are said to *form a Markov chain* in that order (denoted by $X \to Y \to Z$) if the conditional distribution of Z depends only on Y and is conditionally independent of X. Specifically, X,Y and Z form a Markov chain $X \to Y \to Z$ if the join probability mass function can be written as

$$p(x, y, z) = p(x)p(y|x)p(z|y).$$

- $X \to Y \to Z \Rightarrow p(x,z|y) = p(x|y)p(z|y)$
- $X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$
- If Z = f(Y), then $X \to Y \to Z$.

Data-processing inequality

Theorem 2.8.1 (Data-processing inequality)

If $X \to Y \to Z$, then $I(X; Y) \ge I(X; Z)$.

Proof.

By the chain rule, we expand I(X; Y, Z) in two ways:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

= $I(X; Y) + I(X; Z|Y)$.

Since $X \to Y \to Z$, we have I(X; Z|Y) = 0. Since $I(X; Y|Z) \ge 0$, we have $I(X; Y) \ge I(X; Z)$.

Corollaries

Corollary

In particular, if Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$.

Corollary

If $X \to Y \to Z$, then $I(X; Y|Z) \le I(X; Y)$.

Problem 2.5 (Zero conditional entropy)

Show that if H(X|Y) = 0, then X is a function of Y, i.e., for all y with p(y) > 0, there is only one possible value of x with p(x, y) > 0.

Proof.

Assume that there exists an y, say y_0 and two different values of x, say x_1 and x_2 such that $p(y_0, x_1) > 0$ and $p(y_0, x_2) > 0$. Then $p(y_0) \ge p(y_0, x_1) + p(y_0, x_2) > 0$, and $p(x_1|y_0)$ and $p(x_2|y_0)$ are not equal to 0 or 1. Thus,

$$H(X|Y) = -\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y)$$

$$\geq p(y_0) (-p(x_1|y_0) \log p(x_1|y_0) - p(x_2|y_0) \log p(x_2|y_0))$$
> 0

since $-t \log t > 0$ for 0 < t < 1, and is strictly positive for $t \neq 0, 1$, which is a contradiction to H(X|Y) = 0.

- The conditional entropy of a random variable X given another random variable Y is zero (H(X|Y)=0) iff X is a function of Y. Hence we can estimate X from Y with zero probability of error iff H(X|Y)=0.
- We can estimate X with a low probability of error P_e only if the conditional entropy H(X|Y) is small. Fano's inequality quantifies this idea.

Why do we need to related P_e to entropy H(X|Y)? When we have a communication system, we send X, but receive a corrupted version Y. We want to infer X from Y. Our estimate is \hat{X} and we will make a mistake as

$$P_e = \Pr[\hat{X} \neq X]$$

Markov chain $X \to Y \to \hat{X}$.

Problem

A random variable Y is related to another random variable X with a distribution p(x). From Y, we calculate a function $g(Y) = \hat{X}$, where \hat{X} is an estimate of X and takes on values in \hat{X} . We observe that $X \to Y \to \hat{X}$ forms a Markov chain. How to bound the estimate error probability $P_e = \Pr[\hat{X} \neq X]$?

Theorem 2.11.1

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|\hat{X}) \ge H(X|Y).$$

This inequality can be weakened to

$$1 + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$$

or

$$P_{e} \geq \frac{H(X|Y)-1}{\log |\mathcal{X}|-1}.$$

Proof.

Define an error random variable as

$$E = \begin{cases} 1 & \text{if } \hat{X} \neq X, \\ 0 & \text{if } \hat{X} = X. \end{cases}$$

Using the chain rule for entropies to expand $H(E, X | \hat{X})$ in two different ways, we have

$$H(E,X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(E|X,\hat{X})}_{=0} = \underbrace{H(E|\hat{X})}_{\leq H(P_e)} + \underbrace{H(X|E,\hat{X})}_{\leq P_e \log(|X|-1)}$$

Since conditioning reduces entropy, $H(E|\hat{X}) \leq H(E) = H(P_e)$. Since E is a function of X and \hat{X} , the conditional entropy $H(E|X,\hat{X})$ is equal to 0. We now look at $H(X|E,\hat{X})$. By the equation $H(X|Y) = \sum_{Y} \rho(Y)H(X|Y = Y)$, we have

$$\begin{split} H(X|E, \hat{X}) &= \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X|\hat{X} = \hat{x}, E = 0) \\ &+ \Pr[\hat{X} = \hat{x}, E = 1] H(X|\hat{X} = \hat{x}, E = 1) \}. \end{split}$$

Proof.

$$\begin{split} H(E,X|\hat{X}) &= H(X|\hat{X}) + \underbrace{H(E|X,\hat{X})}_{=0} = \underbrace{H(E|\hat{X})}_{\leq H(P_{e})} + \underbrace{H(X|E,\hat{X})}_{\leq P_{e} \log(|X|-1)} \\ H(X|E,\hat{X}) &= \sum_{\hat{x} \in \mathcal{X}} \left\{ \Pr[\hat{X} = \hat{x}, E = 0] H(X|\hat{X} = \hat{x}, E = 0) \right. \end{split}$$

+ $\Pr[\hat{X} = \hat{x}, E = 1]H(X|\hat{X} = \hat{x}, E = 1)$ }.

By definition of E, X is conditionally deterministic given $\hat{X}=\hat{x}$ and E=0, then $H(X|\hat{X}=\hat{x};E=0)=0$. If $\hat{X}=\hat{x}$ and E=1, then X must take a value in the set $\{x\in\mathcal{X}:x\neq x\hat{x}\}$ which contains $|\mathcal{X}|-1$ elements. Then $H(X|\hat{X}=\hat{x};E=1)\leq \log(|\mathcal{X}|-1)$.

$$\begin{split} H(X|E, \hat{X}) &\leq \sum_{\hat{X} \in \mathcal{X}} \Pr[\hat{X} = \hat{x}, E = 1] \log(|\mathcal{X}| - 1) \\ &= \Pr[E = 1] \log(|\mathcal{X}| - 1) \\ &= P_e \log(|\mathcal{X}| - 1) \end{split}$$

Proof.

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | X, \hat{X})}_{=0} = \underbrace{H(E | \hat{X})}_{\leq H(P_{e})} + \underbrace{H(X | E, \hat{X})}_{\leq P_{e} \log(|X| - 1)}$$

$$H(X | E, \hat{X}) = \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X | \hat{X} = \hat{x}, E = 0) + \Pr[\hat{X} = \hat{x}, E = 1] H(X | \hat{X} = \hat{x}, E = 1) \}.$$

$$H(X | E, \hat{X}) \leq \sum_{\hat{x} \in \mathcal{X}} \Pr[\hat{X} = \hat{x}, E = 1] \log(|\mathcal{X}| - 1)$$

$$= \Pr[E = 1] \log(|\mathcal{X}| - 1)$$

$$= P_{e} \log(|\mathcal{X}| - 1)$$

By the data-processing inequality, we have $I(X; \hat{X}) \leq I(X; Y)$ and therefore $H(X|\hat{X}) \geq H(X|Y)$.

Corollary

Corollary

For any two random variables X and Y, let $p = Pr(X \neq Y)$.

$$H(p) + p \log(|\mathcal{X}| - 1) \ge H(X|Y).$$

Proof.

Let $\hat{X} = Y$ in Fano's inequality.

Remark

Suppose that there is no knowledge of Y. Thus, X must be guessed without any information. Let $X \in \{1,2,\ldots,m\}$ and $p_1 \geq p_2 \geq \cdots \geq p_m$. Then the best guess of X is $\hat{X} = 1$ and the resulting probability of error is $P_e = 1 - p_1$. Fano's inquality becomes

$$H(P_e) + P_e \log(m-1) \ge H(X)$$
.

The probability mass function

$$(p_1, p_2, \cdots, p_m) = \left(1 - P_e, \frac{P_e}{m-1}, \cdots, \frac{P_e}{m-1}\right)$$

achieves this bound with equality.

Applications of Fano's inequality

• Prove converse in many theorems (including channel capacity)

Compressed sensing signal model

$$y = Ax + w$$

where $A \in \mathcal{R}^{M \times d}$: projection matrix for dimension reduction. Signal x is sparse. Want to estimate x from y.

Reading & Homework

Reading: Whole Chapter 2

Homework: Problems 2.13, 2.15, 2.32, 2.35