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Review Summary

Definitions:
H(X ) = Ep log

1

p(X )

H(X ,Y ) = Ep log
1

p(X ,Y )

H(X |Y ) = Ep log
1

p(X |Y )

I (X ;Y ) = Ep log
p(X ,Y )

p(X )p(Y )

D(p‖q) = Ep log
p(X )

q(X )

I (X ;Y ) = H(X )− H(X |Y )

= H(Y )− H(Y |X )

= H(X ) + H(Y )− H(X ,Y ).
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Review Summary

Chain rules:

Entropy:

H(X1,X2, . . . ,Xn) =
∑n

i=1 H(Xi |Xi−1, . . . ,X1).

Mutual information:

I (X1,X2, . . . ,Xn;Y ) =
∑n

i=1 I (Xi ;Y |X1,X2, . . . ,Xi−1).

Relative entropy:

D
(
p(x , y)‖q(x , y)

)
= D

(
p(x)‖q(x)

)
+ D

(
p(y |x)‖q(y |x)

)
.
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Jensen’s Inequality

Definition (Convexity)

A function f (x) is said to be convex over an interval (a, b) if

∀x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ)f (x2).

A function f is called strictly convex if equality holds only if λ = 0

or λ = 1.

Definition (Concavity)

A function f is concave if −f is convex.

A function is convex if it always lies below any chord. A function is

concave if it always lies above any chord.

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 22, 2020 4 / 25



sustech-logo.pdf

Jensen’s Inequality

Definition (Convexity)

A function f (x) is said to be convex over an interval (a, b) if for

every x1x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ)f (x2).

A function f is called strictly convex if equality holds only if λ = 0

or λ = 1.

Definition (Concavity)

A function f is concave if −f is convex.

A function is convex if it always lies below any chord. A function is

concave if it always lies above any chord.
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Jensen’s Inequality

Example

f (x) = x2, |x |, ex , x log x (x > 0)

g(x) = log x ,
√
x , (x ≥ 0)
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Jensen’s Inequality

Theorem 2.6.2 (Jensen’s Inequality)

If f is a convex function and X is a random variable,

E [f (X )] ≥ f (E [X ]).

Moreover, if f is strictly convex, E [f (X )] = f (E [X ]) implies that

X = E [X ] with probability 1 (i.e., X is a constant).

Proof.

By mathematical induction.

k = 2:

p(x1)f (x1) + p(x2)f (x2) ≥ f
(
p(x1)x1 + p(x2)x2

)
.

Hypothesis:
∑k−1

i=1 p(xi )f (xi ) ≥ f
(∑k−1

i=1 p(xi )xi
)
.

Induction:
∑k

i=1 p(xi )f (xi ).
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Information Inequality

Theorem 2.6.3 (Information Inequality)

Let p(x), q(x), x ∈ X, be two probability mass functions. Then

D(p‖q) ≥ 0

with equality iff p(x) = q(x) for all x.

Proof.
Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p‖q) = −
∑
x∈A

p(x) log
p(x)

q(x)

=
∑
x∈A

p(x) log
q(x)

p(x)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
(Jensen’s Inequality)

= log
∑
x∈A

q(x)

≤ log
∑
x∈X

q(x) = 0
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Corollaries

Corollary (Nonnegativity of mutual information)

For any two random variables, X , Y ,

I (X ;Y ) ≥ 0,

with equality iff X and Y are independent.

Corollary

D
(
p(y |x)‖q(y |x)

)
≥ 0,

with equality iff p(y |x) = q(y |x) for all y and x such that

p(x) > 0.

Corollary

I (X ;Y |Z ) ≥ 0,

with equality iff X and Y are conditionally independent given Z .

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 22, 2020 9 / 25



sustech-logo.pdf

The maximum entropy distribution

Theorem 2.6.4

H(X ) ≤ log |X |, where |X | denotes the number of elements in the

range of X , with equality iff X has a uniform distribution over |X |.

Proof.

Let u(x) = 1
|X | be the uniform probability mass function over X ,

and let p(x) be the probability mass function for X . Then

0 ≤D(p‖u) =
∑

p(x) log
p(x)

u(x)
= log |X | − H(X ).

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 22, 2020 10 / 25



sustech-logo.pdf

Conditioning reduces entropy

Theorem 2.6.5 (Conditioning reduces entropy)

H(X |Y ) ≤ H(X )

with equality iff X and Y are independent.

Theorem 2.6.6 (Independence bound on entropy)

Let X1,X2, . . . ,Xn be drawn according to p(x1, x2, . . . , xn), then

H(X1,X2, . . . ,Xn) ≤
n∑

i=1

H(Xi )

with equality iff the Xi ’s are independent.
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Data-processing inequality

Definition (Markov Chain)

Random variables X ,Y ,Z are said to form a Markov chain in that

order (denoted by X → Y → Z ) if the conditional distribution of

Z depends only on Y and is conditionally independent of X.

Specifically, X , Y and Z form a Markov chain X → Y → Z if the

join probability mass function can be written as

p(x , y , z) = p(x)p(y |x)p(z |y).

X → Y → Z⇒p(x , z |y) = p(x |y)p(z |y)

X → Y → Z⇒Z → Y → X

If Z = f (Y ), then X → Y → Z .
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Data-processing inequality

Theorem 2.8.1 (Data-processing inequality)

If X → Y → Z, then I (X ;Y ) ≥ I (X ;Z ).

Proof.

By the chain rule, we expand I (X ;Y ,Z ) in two ways:

I (X ;Y ,Z ) = I (X ;Z ) + I (X ;Y |Z )

= I (X ;Y ) + I (X ;Z |Y ).

Since X → Y → Z , we have I (X ;Z |Y ) = 0. Since I (X ;Y |Z ) ≥ 0,

we have I (X ;Y ) ≥ I (X ;Z ).
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Corollaries

Corollary

In particular, if Z = g(Y ), we have I (X ;Y ) ≥ I (X ; g(Y )).

Corollary

If X → Y → Z , then I (X ;Y |Z ) ≤ I (X ;Y ).
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Fano’s inequality

Problem 2.5 (Zero conditional entropy)

Show that if H(X |Y ) = 0, then X is a function of Y , i.e., for all y

with p(y) > 0, there is only one possible value of x with

p(x , y) > 0.

Proof.
Assume that there exists an y , say y0 and two different values of x , say x1 and x2 such

that p(y0, x1) > 0 and p(y0, x2) > 0. Then p(y0) ≥ p(y0, x1) + p(y0, x2) > 0, and

p(x1|y0) and p(x2|y0) are not equal to 0 or 1. Thus,

H(X |Y ) =−
∑
y

p(y)
∑
x

p(x |y) log p(x |y)

≥ p (y0) (−p (x1|y0) log p (x1|y0)− p (x2|y0) log p (x2|y0))

> 0

since −t log t ≥ 0 for 0 ≤ t ≤ 1, and is strictly positive for t 6= 0, 1, which is a

contradiction to H(X |Y ) = 0.
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Fano’s inequality

The conditional entropy of a random variable X given another

random variable Y is zero (H(X |Y ) = 0) iff X is a function of

Y . Hence we can estimate X from Y with zero probability of

error iff H(X |Y ) = 0.

We can estimate X with a low probability of error Pe only if

the conditional entropy H(X |Y ) is small. Fano’s inequality

quantifies this idea.

Why do we need to related Pe to entropy H(X |Y )? When we have

a communication system, we send X , but receive a corrupted

version Y . We want to infer X from Y . Our estimate is X̂ and we

will make a mistake as

Pe = Pr[X̂ 6= X ]

Markov chain X → Y → X̂ .
Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 22, 2020 16 / 25
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Fano’s inequality

Problem

A random variable Y is related to another random variable X with

a distribution p(x). From Y , we calculate a function g(Y ) = X̂ ,

where X̂ is an estimate of X and takes on values in X̂ . We observe

that X → Y → X̂ forms a Markov chain. How to bound the

estimate error probability Pe = Pr[X̂ 6= X ]?
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Fano’s inequality

Theorem 2.11.1

For any estimator X̂ such that X → Y → X̂ , with

Pe = Pr{X 6= X̂}, we have

H (Pe) + Pe log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y ).

This inequality can be weakened to

1 + Pe log(|X | − 1) ≥ H(X |Y )

or

Pe ≥
H(X |Y )− 1

log |X | − 1
.
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Fano’s inequality

Proof.
Define an error random variable as

E =

{
1 if X̂ 6= X ,

0 if X̂ = X .

Using the chain rule for entropies to expand H(E , X |X̂ ) in two different ways, we have

H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

Since conditioning reduces entropy, H(E |X̂ ) ≤ H(E) = H(Pe ). Since E is a function of X and X̂ , the conditional

entropy H(E |X , X̂ ) is equal to 0. We now look at H(X |E , X̂ ). By the equation

H(X |Y ) =
∑

y p(y)H(X |Y = y), we have

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.
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Fano’s inequality

Proof.

H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.

By definition of E , X is conditionally deterministic given X̂ = x̂ and E = 0, then H(X |X̂ = x̂ ; E = 0) = 0. If

X̂ = x̂ and E = 1, then X must take a value in the set {x ∈ X : x 6= xx̂} which contains |X| − 1 elements.

Then H(X |X̂ = x̂, E = 1) ≤ log(|X| − 1).

H(X |E , X̂ ) ≤
∑
x̂∈X

Pr[X̂ = x̂, E = 1] log(|X| − 1)

= Pr[E = 1] log(|X| − 1)

= Pe log(|X| − 1)
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Fano’s inequality

Proof.

H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.

H(X |E , X̂ ) ≤
∑
x̂∈X

Pr[X̂ = x̂, E = 1] log(|X| − 1)

= Pr[E = 1] log(|X| − 1)

= Pe log(|X| − 1)

By the data-processing inequality, we have I (X ; X̂ ) ≤ I (X ; Y ) and therefore H(X |X̂ ) ≥ H(X |Y ).
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Corollary

Corollary

For any two random variables X and Y , let p = Pr(X 6= Y ).

H(p) + p log(|X | − 1) ≥ H(X |Y ).

Proof.

Let X̂ = Y in Fano’s inequality.
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Fano’s inequality

Remark

Suppose that there is no knowledge of Y . Thus, X must be

guessed without any information. Let X ∈ {1, 2, . . . ,m} and

p1 ≥ p2 ≥ · · · ≥ pm. Then the best guess of X is X̂ = 1 and the

resulting probability of error is Pe = 1− p1. Fano’s inquality

becomes

H(Pe) + Pe log(m − 1) ≥ H(X ).

The probability mass function

(p1, p2, · · · , pm) =

(
1− Pe ,

Pe

m − 1
, · · · , Pe

m − 1

)
achieves this bound with equality.
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Applications of Fano’s inequality

Prove converse in many theorems (including channel capacity)

Compressed sensing signal model

y = Ax + w

where A ∈ RM×d : projection matrix for dimension reduction.

Signal x is sparse. Want to estimate x from y .
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Reading & Homework

Reading : Whole Chapter 2

Homework : Problems 2.13, 2.15, 2.32, 2.35
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