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Review Summary

@ Definitions:

1

H(X) = E,log 200

1
H(X,Y) = E, log XV
H(X|Y) = E, log ﬁ

I(X;Y)=E,log (% (Y)Z)
P
D(pllq) = E, log E9)

I(X; Y) = H(X) — H(X|Y)
= H(Y) = H(Y|X)
= H(X) + H(Y) = H(X, Y).
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Review Summary

@ Chain rules:
Entropy:
H(X1, X2, ..., Xn) = > 1 HXG | Xi—1, ..., X1).

Mutual information:
/(Xl,X2, ce ,Xn; Y) = 27:1 /(X,'; Y|X1,X2, N ,X,‘_l).

Relative entropy:
D(p(x, y)lla(x.y)) = D(p(x)lla(x)) + D(p(y[x)la(y|x)).
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Jensen’s Inequality

Definition (Convexity)

A function f(x) is said to be convex over an interval (a, b) if
Vx1,x2 € (a,b) and 0 < A <1,

f()\Xl aF (1 = /\)Xg) < )\f(Xl) aF (1 = )\)f(Xg).

A function f is called strictly convex if equality holds only if A =0
or A =1.

Definition (Concavity)

A function f is concave if —f is convex.

A function is convex if it always lies below any chord. A function is

concave if it always lies above any chord.
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every xixp € (a,b) and 0 < A < 1,

fF(Axa 4+ (1= A)x2) < Af(x) + (1= A)f(x).
A function f is called strictly convex if equality holds only if A =0

or A =1.

Definition (Concavity)

A function f is concave if —f is co !
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Jensen’s Inequality

(a

(b)
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Jensen’s Inequality

Theorem 2.6.2 (Jensen’s Inequality)

If f is a convex function and X is a random variable,
E[f(X)] = f(E[X]).

Moreover, if f is strictly convex, E[f(X)] = f(E[X]) implies that
X = E[X] with probability 1 (i.e., X is a constant).

By mathematical induction.
o k=2:
p(x1)f(x1) + p(x2)f(x2) > f(p(x1)x1 + p(x2)x2).
o Hypothesis: S5 p(xi)f(x;) > (S5 p(xi)xi).
o Induction: S5, p(x;)f(x;). 0

<
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Information Inequality

Theorem 2.6.3 (Information Inequality)

Let p(x), q(x), x € X, be two probability mass functions. Then

D(pllq) = 0

with equality iff p(x) = q(x) for all x.

Let A = {x: p(x) > 0} be the support set of p(x). Then

p(x)
—D = — log —~
(plla) %P(X) e
q(x)
= x) log ——
%P( Vo
< log Z p(x)? (Jensen’s Inequality)
XEA plx
=log Y q(x)
XEA
<log Y q(x) =0
xeX
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Corollaries

Corollary (Nonnegativity of mutual information)

For any two random variables, X, Y,
I(X;Y) >0,
with equality iff X and Y are independent.

4

Corollary

D(p(y|x)la(ylx)) >0,
with equality iff p(y|x) = q(y|x) for all y and x such that
p(x) > 0.

v

Corollary

I(X;Y|Z) >0,
with equality iff X and Y are conditionally independent given Z.

<
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The maximum entropy distribution

Theorem 2.6.4
H(X) <
range of X, with equality iff X has a uniform distribution over | X|.

, where |X| denotes the number of elements in the

Proof
Let u(x) = |X|
and let p(x) be the probability mass function for X. Then

0 <D(p||u) Zp Iog = log |X| — H(X).

be the uniform probability mass function over X,
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Conditioning reduces entropy

Theorem 2.6.5 ( Conditioning reduces entropy)

H(X|Y) < H(X)
with equality iff X and Y are independent.

Theorem 2.6.6 (Independence bound on entropy)

Let Xy, Xz, ..., X, be drawn according to p(x1,x2,...,%s), then
H(X1, Xa, ..., Xn) <> H(X)
i=1

with equality iff the X;'s are independent.
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Data-processing inequality

Definition (Markov Chain)

Random variables X, Y, Z are said to form a Markov chain in that
order (denoted by X — Y — Z) if the conditional distribution of
Z depends only on Y and is conditionally independent of X.
Specifically, X, Y and Z form a Markov chain X — Y — Z if the

join probability mass function can be written as

p(x,y,z) = p(x)p(y|x)p(z]y).

o X =Y = Z=p(x,z|y) = p(x|y)p(z|y)
o X—-Y—>Z7=7—-Y =X
o If Z=1f(Y), then X > Y — Z.
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Data-processing inequality

Theorem 2.8.1 (Data-processing inequality)
IFX =Y = Z, then I(X; Y) > I(X; Z).

Proof.
By the chain rule, we expand /(X; Y, Z) in two ways:

I(X:Y,2Z) = 1(X; Z)+ I(X; Y|2)
= I(X;Y) + I(X; Z|Y).

Since X — Y — Z, we have /(X; Z|Y) = 0. Since I(X; Y|Z) > 0,
we have /(X;Y) > I(X; 2). O

v
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Corollaries

In particular, if Z = g(Y), we have I(X;Y) > I(X; g(Y)).

If X > Y — Z, then I(X; Y|Z) < I(X; Y).
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Fano's inequality

Problem 2.5 (Zero conditional entropy)
Show that if H(X|Y) =0, then X is a function of Y, i.e., for all y
with p(y) > 0, there is only one possible value of x with

p(x,y) > 0.

Proof.

Assume that there exists an y, say yp and two different values of x, say x; and x» such

that p(yo,x1) > 0 and p(yo, x2) > 0. Then p(y0) > p(y0,x1) + P(¥0, x2) > 0, and
p(x1lyo) and p(x2|yo) are not equal to 0 or 1. Thus,

HXIY) ==>"p(y) > p(xly) log p(x|y)
y X

| A\

> p(y0) (—p (x1]y0) log p (x1|y0) — p (x2|y0) log p (x2]y0))
>0

since —tlogt > 0 for 0 < t < 1, and is strictly positive for t # 0,1, which is a
contradiction to H(X|Y) = 0. O

y
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Fano's inequality

@ The conditional entropy of a random variable X given another
random variable Y is zero (H(X|Y') = 0) iff X is a function of
Y. Hence we can estimate X from Y with zero probability of
error iff H(X]Y) = 0.

@ We can estimate X with a low probability of error P, only if
the conditional entropy H(X|Y) is small. Fano’s inequality
quantifies this idea.

Why do we need to related P, to entropy H(X|Y)? When we have
a communication system, we send X, but receive a corrupted
version Y. We want to infer X from Y. Our estimate is X and we
will make a mistake as

P. = Pr[X # X]
Markov chain X — Y — X.
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Fano's inequality

Problem

A random variable Y is related to another random variable X with
a distribution p(x). From Y, we calculate a function g(Y) = X,
where X is an estimate of X and takes on values in . We observe
that X — Y — X forms a Markov chain. How to bound the
estimate error probability P = Pr[X # X]?
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Fano's inequality

For any estimator X such that X — Y — X , with
P. = Pr{X # X}, we have

H (Pe) + Pelog(|X| — 1) > H(X|X) > H(X|Y).

This inequality can be weakened to
1+ Pelog(|X] —1) > H(X|Y)

or
H(X|Y)-1
= log|X| -1
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Fano's inequality

Define an error random variable as

-l 1 if X # X,
Tl 0 ifX=X.

Using the chain rule for entropies to expand H(E, X\X) in two different ways, we have
H(E, X|X) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
—— N — N —

=0 <H(Pe)  <Pelog(|X|—1)

Since conditioning reduces entropy, H(E|X) < H(E) = H(Pe¢). Since E is a function of X and X, the conditional
entropy H(E|X, X) is equal to 0. We now look at H(X|E, X). By the equation
HIXIY) = 55, B)H(XIY = ), we have
H(X|E,X) = > {Pr[X = &, E = 0JH(X|X = %, E = 0)
xex
+Pr[X = &, E = 1]H(X|X = &, E = 1)}.
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Fano's inequality

H(E, X|R) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
N—— N —

=0 <H(Pe)  <Pelog(|X|—1)

H(X|E,X) = > {Pr[X =&, E =0H(X|X = %, E
xex
+PriX =&, E =1H(X|X = &, E = 1)}.

0)

By definition of E, X is conditionally deterministic given X = % and E = 0, then H(X\X =%E=0)=0.If

X = % and E = 1, then X must take a value in the set {x € X : x # x&} which contains |X| — 1 elements.
Then H(X|X = %, E = 1) < log(|X| — 1).
H(X|E,X) < > PrIX =&, E = 1]log(|X| — 1)
rex
= Pr[E = 1] log(| X| — 1)
= Pelog(|X| — 1)
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Fano's inequality

H(E, X|X) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
R N e’ R

=0 <H(Pe)  <Pelog(|X|—1)

H(X|E, X) = > {Pr[X = %, E = 0]H(X|X = %, E = 0)
xeX
+PriX =%, E=1H(X|X = &, E = 1)}.

-

H(X|E,X) < > Pr[X =&, E = 1]log(|X| — 1)
REX
= Pr[E = 1] log(| X| — 1)
= Pe log(|X| — 1)

By the data-processing inequality, we have /(X; X) < I(X; Y) and therefore H(X|X) > H(X|Y). O
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Corollary

For any two random variables X and Y , let p = Pr(X # Y).

H(p) + plog(|X| —1) = H(X]Y).

Let X = Y in Fano's inequality. 0J l
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Fano's inequality

Remark

Suppose that there is no knowledge of Y. Thus, X must be
guessed without any information. Let X € {1,2,..., m} and
p1>p2 > -+ > pm. Then the best guess of X is X =1 and the
resulting probability of error is P = 1 — p;. Fano's inquality

becomes
H(Pe) + Pelog(m — 1) > H(X).

The probability mass function

Pe P
(Pl’P2a"‘7Pm)— (1_Pe7m_1a"')m_1)

achieves this bound with equality.
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Applications of Fano's inequality

@ Prove converse in many theorems (including channel capacity)

@ Compressed sensing signal model
y=Ax+w

where A € RM*9: projection matrix for dimension reduction.
Signal x is sparse. Want to estimate x from y.
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Reading & Homework

Reading : Whole Chapter 2

Homework : Problems 2.13, 2.15, 2.32, 2.35
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